o . .
@ Microservices Lessons Learned

Susanne Kaiser
Independent Tech Consultant

@suksr

@suksr

THE SCIENCE OF DEVOPS

ACCELERATE

Building and Scaling High Performing
Techno|ogy Organizations

Nicole Forsgren, PhD
Jez Humble ond Gene Kim

Software Delivery Performance

Profitability, Productivity & Market Share

@suksr

Software Development
Architecture and Design 2019 Q1 Graph

http://infog.link/architecture-trends-2019

Blockchain and
Distributed Ledgers

Service meshes
(Envoy, Linkerd, Istio)

HTTP/3

Innovators

Reactive Programming

Functional
Programming

CQRS
Actor Model

"Serverless" (FaaS/
BaaS/DBaaS/PaaS)

gRPC and HTTP/2
GraphQL

Evolutionary
Architecture

CHASM

(Lightweight) workflow
and decision
automation platforms

Correctly built
distributed systems

"Architect as technical
leader"

Early Adopters

Event-Driven
Architecture (and Event
Sourcing)

Eventual Consistency

Early Majority

InfoQ

Microservices

Behaviour-Driven
Design

Test-Driven Design
REST

Late Majority

@suksr

Software Development
Architecture and Design 2019 Q1 Graph

http://infog.link/architecture-trends-2019

Blockchain and
Distributed Ledgers

Service meshes
(Envoy, Linkerd, Istio)

HTTP/3

Innovators

Reactive Programming

Functional
Programming

CQRS
Actor Model

"Serverless" (FaaS/
BaaS/DBaaS/PaaS)

gRPC and HTTP/2
GraphQL

Evolutionary
Architecture

(Lightweight) workflow
and decision
automation platforms

Correctly built
distributed systems

Architect as technical
leader"

Early Adopters

CHASM

Event-Driven

Architecture (and Event

Sourcing)
Eventual Consistency

Early Majority

InfoQ

Microservices

Behaviour-Driven
Design

Test-Driven Design
REST

Late Majority

@suksr

-
-
-
-
-

-
-

@suksr

Background]

Independent Tech Consultant

T O

Co-Organizer @microXchg, Berlin

y Susanne Kaiser ... who?
- CTO

at Just Software /
@JustSocialApps \~

QCon

NEW YORK «» InfoQ Program committee
Program committee & Program committee ServerlessDays, Hamburg
track host MicroCPH, Copenhagen @ServerlessHAM
QCon, New York @MicroCPH
@qconnewyork

@suksr

Background
Motivation for Microservices

.,/"'Autonomoué“x,l " Work at different parts

.............

;""Developindependenﬂy Deploylndependently Scale mdependently :,3

:“‘ teams —'—_,»': “‘-“‘ mdependent'y _."—"' “'“. ""“ ---------------------------------------

>t At dn‘ferent

N speed

@suksr

————
-
-
-

o

. Organizational
Circumstances

Challenges Of Microservices

- “'
- -

@suksr

..............
- N

Structure Skillset

@suksr

.-

e Y
R e K &

T Maintenance Runtime

effort environment -

Structure Skillset

@suksr

e Y
PG na e e ¥ e

Maintenance Runtime

Structure Skillset

Size NB E@@ FO—0-0>{

New Features Timeline / Milestones

effort environment

C(g{é% \ CSv—T Strategy

@suksr

=

.....

N

. Organizational
Circumstances

- ‘—'
~ -

@suksr

Loose coupling between services

J

_J

High cohesion within a service

@suksr

Loose coupling between services

J

High cohesion within a service

_J

X Bounded Context

Semantic boundary

P LT LI

. ’ WeII defined

business function

around domain model /

@suksr

............................... S
. DBk

JUST DRIVE JUST CONNECT JUST LIST

______________________________________ gg S52 > Og%go

JUST PEOPLE JUST NEWS JUST WIKI

@suksr

i

@suksr

<><><> O
R &S
JUST IDRlVE JUST PEOPLE

.............
.............

@suksr

J REST API

O
|

DB Adapter

/T 2 ownsdocument
L | state

@suksr

J REST API

O
B

DB Adapter

? * owns profile ™ document -
state 8 created by
“ author '

/T 2 ownsdocument
L | state

@suksr

.:"’pu b|ISh

 Message Broker

(JOooog

‘]

Events

.......

@ local copy
i ofauthor

J REST API

ﬁle- owns document §
state

@suksr

v
...............
am-

Good approach in general, /' NewBusiness Logic/
but we did too many steps at once
]
]
=> Not optimal to start with
O New Data Structure
!

VS.

@suksr

.

Easy to Extract

@suksr

Incremental Decomposition = Bottom-Up -or- Incremental Decomposition = Top-Down
@suksr

=

=

-2
-
‘---s

fl - Organizational :Z),_., Cross-Cutting Concerns
Circumstances : P N

~ _"
- -

@suksr

Cross-Cutting Concerns

@% Authorization

L.
/

.

v

.

i
i
'

v

JUST DRIVE JUST WIKI

Inter-service dependency

Fine-grained authorization

@suksr

Cross-Cutting Concerns

O% Authorization

Ok, then I am putting my code

| have a new service

that needs authorization. Where is

the authz service | could use?

to the place where authz handling

exists ... to the monolith.

Feeding the monolith

V-

Ok, then | am implementing authz

in my local service.

Re-implementing authz w/ every

new service

@suksr

6 Feeding the monolith

/\ Re-implementing authz w/ every
new service

@ Handle Cross-Cutting Concerns Early

@suksr

=

————
-
-
PR
-

=

-2
-
‘---s

N

- Organizational :Z),_., Cross-Cutting Concerns
Circumstances : |

Challenges Of Microservices

~ _"
- -

@suksr

@@ Z 597 @

Does a change to one microservice require changes to

or deployments of other microservices?

@suksr

" Cross-Cutting Concerns e

. conform ~ Authz Service

; conform. i

One stable

common contract

\
Y
v
v
'
'
.
.
.
B .
.
\ .
'\ /
. .
............... A —
.................
P—

@suksr

=

-
-
PR
-

=

- Organizational :Z),_., Cross-Cutting Concerns
Circumstances : |

o

Challenges Of Microservices

~ _"
- -

PRREY RN

-1' 50 Service-Interaction, Shared Data & Event-Patterns

@suksr

,~ Serwce Interaction .
C><_>C> Request-Driven / Event- Dnven

................... command

command

Message Broker

DDDDD

-'ff pubhsh subscribe

Message Broker

Events D U D D D Events

-'f: pubhsh {subscribe

Request-Driven Event-Driven Hybrid

@suksr

Remote query

", d|rectly to source Py

D 0] D—j

Q Events for notification | -~

=

@suksr

..................
- - -
-

.......

- -

Message Broker.

@suksr

....................

Multiple sources of truth

Internal source of truth

-
-

-

Dual Writes

External source of truth

% Risk of Inconsistencies

“Traditional” Event-Driven System

How To Manage Shared Data? .

Single source of truth

Events as first-class citizens

R (inuis]g
)

Events as primary data source

Event Log

@suksr

Event Log

Persisted
" Append-Only |

Profile

Created

e

| >T

Ordered " Sequence of Events

Event = A fact that has happened in the past

@suksr

Event Sourcing

JEPPR Profile Profile Profile
i 10 ! State changes modeled as series of events Created | | Updated| |Deactivated

&

=
,,,,,

20 Events are persisted & appended to the event log U:] 0] [:U
--- ~

50 Services can subscribe to the event log U:] OOooag) l Subscriber l

40 Current state is reconstructed by replaying events U:, D D D DJ Profile

\ > State
_ =

@suksr

Event Sourcing

Your Profile

Firstname

L]

Lastname

E

Client

N

_

(

Event Log

@suksr

Event Sourcing

' flo : How to derive materialized views?

Your Profile

Firstname

—| - —om
G

E

Client

Event Log

@suksr

Event-Sourcing

f\ S) i<—‘ bentHandleL]
S~—_"
Your Profile Read Store

Firstname

C) i

Lastname

-

@suksr

Event-Sourcing

F S) i<—’ bentHandleL]
S~—_"
Your Profile Read Store

Firstname

L]
Lastname F

E

- 7.} How to update state?

@suksr

 Event-Sourcing

State Changes w/ Commands & Events

Your Profile

Firstname

L]

Lastname

=
/

Read Store

f\%’ﬁ“b‘mﬂv

.

N %L crent J

\

@suksr

Event-Sourcing

State Changes w/ Commands & Events

F —) iz—‘\ bentHandleL]
~__~
Your Profile

Read Store
Firstname

-

= (]

J

N\
7
L> ——%L Event J
{oToh B R oo X S N TTEmmm |
'Read events of: : replay events to: :check invariants i: generate event : : save event
profile build internal | :'on internal state & update internal e eeeaae :
"""""""" \state] Tremeeeeeeeeoo otate :

~

@suksr

Event-Sourcing Y,

e . (read model)
F .%’—' i/—‘ {E/entHandleL]
Your Profile Read Store
Firstname
Lastname (J
[-) i Seperate Models N
J
]

¢ Change state .
(write model)

@suksr

. Event-Sourcing
1 CQRS

Commands & Queries

Can be scaled independently
——

Can be deployed separately
—

Read model can be optimized

to make queries fast &

efficient

o
Might involve more work
due to transforming

events to a read model
ﬁ—
Might have a higher learning

curve

o

s Request data
(read model)

F ‘ %’—) i/—‘ {E/entHandleL]

Your Profile
Firstname
Lastname i
[—) . Seperate Models
/
7

s

Read Store

-

Change state .
(write model)

@suksr

~ Event-Sourcing
™ Validation

F %,—‘ ‘é—’ bentHandlej
S~——"

Registration Read Store

Username

Password (J
[' N\

/

NN N ey

,,,,,

@suksr

~ Event-Sourcing :
Validation

Registration

Username

L]

Password

Z
/

—

Username

Read Store

ey

)

Allocated Usernames

-—>L Event J

. 50 How to preserve business constraints among domain models, e.g. unique usernames?

Same?

@suksr

_ Event-Sourcing .
Validation: New Read Store & Client-side Query Execution

f\ . L— i Iéd (jentHandlej
~—_

Registration Read Store

Username /
|
%’j\/] {

r y J Username
Passwor
‘< uer

/ : Eventual ConS|stency

’o

‘e
..............................
PPTTLELEE Ll | 11 JSNy
....................
ot .,
X

. ?)o How to preserve business constraints among domain models, e.g. unique usernames?

Same?

@suksr

_ Event-Sourcing .
Validation: New Read Store & Client-side Query Execution

f\ . L— i Iéd (jentHandlej
~—_

Registration Read Story
l — f!/ ,
Password (

/ : Eventual ConS|stency

’o

Username

L]

Username

Query

‘e
..............................
PPTTLELEE Ll | 11 JSNy
....................
ot .,
X

]
~ : . :
~duplicated usernames :

. ?)o How to preserve business constraints among domain models, e.g. unique usernames?

e

SNomm=

@suksr

_ Event-Sourcing |
" Validation: New Read Store & Client-side Query Execution + Saga Pattern

f\ .%—i ‘L—’l EventHandIej
Registration Read Store
Username
r J Username l i

Password

/ i Eventual ConS|stency

’o

Query

‘e
..............................
PPTTLELEE Ll | 11 JSNy

ot .,
X

AN 1 Accounts w/ E T N — . Saga Pattern
dupl|cated usernames . /m Compensating Event : ——

‘e
.....................

. ?)o How to preserve business constraints among domain models, e.g. unique usernames?

Same?

@suksr

Event-Patterns

Event Driven State Transfer |

feeeas

« Simple integration « Eliminating remote query by
» No local datasets to maintain introducing local copy => better
» Remote query => increasing coupling decoupling

e Local copy => better autonomy
» Duplicating effort to maintain
local dataset

Event Sourcing w/ CQRS

Event Log

Series of events make activities in business
domain explicit

Complete log of state changes => eases
troubleshooting

Independant scaling of read & writes

Read store can be optimized to queries
Enables audit logging

Might involve more work due to
transforming events to a read model
Preserving business contraints among

domain objects could be tricky @suksr

=

————
-
PR
-

=

- Organizational :Z),_., Cross-Cutting Concerns
Circumstances : |

o

Challenges Of Microservices

-2
.

;’6“. Infrastructure & . .
~7% Operational Complexities e ’

A, Service-Interaction, Shared Data & Event-Patterns

@suksr

U

uService

@suksr

CompIeX|t|es

{ Q Q 0 Q Cl/CD Pipeline

Checkout Build Test Deploy Backup Recovery

W 2 = =y
- | = |

Monitoring Log Aggreation Metrics Distributed Health Checks

Tracing

@Timeout-HandIing S Retries ;Zg ldempotency Bulkheads mCircuit Breaker’

—

Message Broker
, ! U D D D D API Gateway Serwce D|scovery Load Balancer

'*M@@Ei

Hardware Virtualization Container RUNtime

Data Store uService

@suksr

Cl/CD Pipeline @ ’
Checkout Build Test Deploy P Backup Recovery

A IRE R

Monitoring Log Aggreation ~ Metrics Distributed Health

Tracing Checks

@ Timeout-Handling S Retries ;:3 Idempotency Bulkheads mCirCUit Breaker '
Message Bro|<er
)_j 1 D D D D D % API-Gateway SerV|ce Dlscovery Load—BaIancer

@%t @@@

Hardware Virtualization

Container Runtime Data Store

@suksr

CompIeX|t|es

{

CI/CD Pipeline
Checkout Build Test Deploy Backup Recovery
) R = = R
))y . =
" Team ™, ‘onitering % i °s Distripr X
| Legacy *-- e » Strategy -...__

T

Structure Skillset

& e

Maintenance Runtime
\
%@ /)rokel ., effort environment ¢’
M Y .
1} , _____
A Kﬁg . [::] i _________________
‘ "J_\/_/

—___-.-----_____

A
~

ni —— O
@@)
Hardware Virtualization

Contamer

Runtime

~

‘ .
.

’ A

E-E*jg FO-0-0> ¢

. New Features Timeline / Milestones ¢
RS

.
‘e —“’ |
Sk, T T Tt e mnammmm==T —CrL

=3

Data Store uService

@suksr

@suksr

Complexities

PRl N

How can a small team handle infrastructure complexities

and deliver business value?

@suksr

Build the things that differentiate you

ACCELERATE

=7 O’ - > _
/\> : Flicika Parsgiuss, PRE
Jex Humbla, Ceene Kim

Offload the things that don't

@suksr

_,
=.
o
D

pSe

il
4

Data Store

&

X

untime

=¥

Container

Orchestration

o

OFS 0O/S

Virtualization

o

i —— QO

Hardware

/I\

Offload by getting common

building blocks managed

@suksr

Cloud Native

w/ Contalner Orchestra_’gpn API-Gateway

Recovery D/NQ Q Scaling

pService pService

@6 Service Discovery

%Load Balancer Runtime Runtime (‘?H Log Aggreation
o¥e} /} SN
NS NS
: Container Container

g:@jg Config-Mngmt. Health Checks

Message Broker o%
OOEOD) ois o9)
(T..T.:E’ m— 0 Data Store
z Virtualization l

O —— Managed by YOU
Hardware F—— Managed by Platform

@suksr

Monitoring

@)
S~
(¥2)

Backup

i
i
'
v
\

<,‘,__> 2 Kubernetes / Service Mesh l

(e

, /I .
(L Timeout ') Retries Bulkheads

@suksr

.. Serverless

T

uService

&3

Data Store

)

Runtime

N
NS
i Container

T l Orchestration

s 0

O/S O/S

mn— Q| mm—Q
Virtualization

B i —— QO

Hardware

.....

T

)

Function

=3

Data Store

o0

Runtime

Orchestration

o/s

Virtualization

[—0)

Hardware

1d
-2

E

—— Unit of Work

F— Managed by YOU
—— Managed by Third Party

@suksr

Serverless

Characteristics

Event-Driven Workflow Ephemeral Function

triggers

Event Function

@ Au”Eb—ScaIing g Pay-per-Execution

Fully Managed By Third Party |’

\

Hardware Virtualization Container Runtime Data Store

@suksr

]

ProfilesService

L
l API-Gateway
GET /profiles/{id} PUT /profiles/{id}
GET /profiles / POST /profiles \ DELETE /profiles/{id}
v \/ \ N/ N
listProfile getProfile createProfile updateProfile deleteProfile

7

i L=

\ F’ <

One function per endpoint and action

@suksr

Serverless

Benefits

’@ Low Maintenance
&ﬁ

S Low Cost (Total Cost of Ownership)

@ Fasy to Scale

7
Cci Focus on Code => Focus on Core Domain

@suksr

Serverless

. Constraints

Limitation in programming languages and runtimes

Latency at initial requests (cold start)

Limits of RAM, deployment package size, number of parallel executions

(Maximum Execution Time)

Tooling for distributed tracing

Vendor Lock-In

@suksr

@ Lessons Learned

Start small Handle cross-cutting concerns early Avoid a distributed monolith

;o /\/\O ©
3 <

Design event-driven to be easy Consider managed services to offload Be aware of affecting circumstances

to evolve infrastructure complexities &

Distributed Systems are Complex :)

@suksr

THANK YOU

Susanne Kaiser
Independent Tech Consultant

@suksr

