

Microservices Lessons Learned
Susanne Kaiser

Independent Tech Consultant
@suksr

@suksr

Software Delivery Performance

Profitability, Productivity & Market Share
@suksr

@suksr

@suksr

Challenges Of Microservices

@suksr

Background

@suksr

CTO
at Just Software
@JustSocialApps

Susanne Kaiser … who?

Independent Tech Consultant
@suksr

Co-Organizer @microXchg, Berlin

Program committee
ServerlessDays, Hamburg

@ServerlessHAM
Program committee

MicroCPH, Copenhagen
@MicroCPH

Program committee &
track host

QCon, New York
@qconnewyork

Background
Motivation for Microservices

Autonomous
teams

Develop independently Deploy independentlyWork at different parts
independently

Scale independently

At different
speed

@suksr

Challenges Of Microservices

Organizational
Circumstances

@suksr

Organizational Circumstances

Team

Structure Skillset

Size

Journey

@suksr

Team

Structure Skillset

Size

Journey

Legacy

Maintenance
effort

Runtime
environment

@suksr

Organizational Circumstances

Team

Structure Skillset

Size

Journey

Legacy

Maintenance
effort

Runtime
environment

Strategy

New Features Timeline / Milestones

@suksr

Organizational Circumstances

Challenges Of Microservices

Organizational

Manageable Steps

Circumstances

@suksr

Identify Bounded Contexts

High cohesion within a service

Loose coupling between services

@suksr

High cohesion within a service

Loose coupling between services

Bounded Context

Related behaviour

Semantic boundary
around domain model

Well-defined
business function

@suksr

Identify Bounded Contexts

JUST DRIVE JUST CONNECT JUST LIST

JUST WIKIJUST PEOPLE JUST NEWS

Bounded Contexts

@suksr

Examples for Bounded Contexts

JUST DRIVE

Decomposition Strategy
Co-Existing Service From Scratch

@suksr

JUST DRIVE

Decomposition Strategy
Co-Existing Service From Scratch

JUST PEOPLE

@suksr

Decomposition Strategy
Co-Existing Service From Scratch

owns document
state

REST API

Application-Service

Domain-Model

DB Adapter
Monolith

JUST DRIVE

@suksr

Decomposition Strategy
Co-Existing Service From Scratch

owns document
state

owns profile
state

document
created by
author

Monolith

REST API

Application-Service

Domain-Model

DB Adapter

@suksr

owns document
state

owns profile
state Events

local copy
of author

Message Broker

Decomposition Strategy
Co-Existing Service From Scratch

REST API

Application-Service

Domain-Model

DB Adapter

Message Broker
Adapter

Monolith
publish

subscribe

@suksr

DB Adapter

Message Broker
Adapter

Application-Service

Domain-Model

REST API

Domain-Event

Good approach in general,

but we did too many steps at once

New UI

New Business Logic

New Data Structure

=> Not optimal to start with

vs.

Decomposition Strategy
Co-Existing Service From Scratch

@suksr

Start Small

Easy to Extract

@suksr

 Incremental Decomposition Top-Down→ Top-Down- or -

Monolith

Monolith

Monolith

Incremental Decomposition Bottom-Up→ Top-Down

Monolith

Monolith

Monolith

Decompose in Steps

@suksr

Challenges Of Microservices

Organizational

Manageable Steps

Cross-Cutting Concerns
Circumstances

@suksr

Cross-Cutting Concerns
Authorization

JUST DRIVE JUST WIKI

Fine-grained authorization

Inter-service dependency

@suksr

Cross-Cutting Concerns

I have a new service
that needs authorization. Where is
the authz service I could use?

Not there, yet. Sorry!

Ok, then I am putting my code
to the place where authz handling
exists … to the monolith.

Feeding the monolith Re-implementing authz w/ every
new service

Ok, then I am implementing authz
in my local service.

Authorization

@suksr

Cross-Cutting Concerns
Handle Them Early

Feeding the monolith

Re-implementing authz w/ every
new service

Handle Cross-Cutting Concerns Early

@suksr

Challenges Of Microservices

Organizational

Manageable Steps

Cross-Cutting Concerns

Distributed Monolith

Circumstances

@suksr

Cross-Cutting Concerns
Avoid A Distributed Monolith

Authz Service

@suksr

Does a change to one microservice require changes to
or deployments of other microservices?

Cross-Cutting Concerns
Avoid A Distributed Monolith

Authz Serviceconform

One stable
common contract

conform

conform

@suksr

Challenges Of Microservices

Organizational

Manageable Steps

Cross-Cutting Concerns

Distributed Monolith

Circumstances

Service-Interaction, Shared Data & Event-Patterns

@suksr

Service Interaction
Request-Driven / Event-Driven

command

query Events
Message Broker

publish subscribe

command

query

Request-Driven Hybrid

Events
Message Broker

publish subscribe

Event-Driven

@suksr

How To Manage Shared Data?
Hybrid Model

Message Broker

REST API

Remote query
directly to source

Events for notification

@suksr

Event Driven State Transfer

Message Broker

Local copy of
profile data

ProfileUpdatedEvent

How To Manage Shared Data?

Events for data duplication

@suksr

Source Of Truth
How To Manage Shared Data?

Internal source of truth

External source of truth

Multiple sources of truth Single source of truth

Events as first-class citizens

“Traditional” Event-Driven System Event Log
@suksr

Dual Writes

Risk of Inconsistencies

Events as primary data source

Event Log

Profile
Created

Page
Created

Doc
Uploaded

Page
Archived

Profile
Deactivated

Event = A fact that has happened in the past

Immutable Append-Only
Persisted

Ordered Sequence of Events

@suksr

Event Sourcing

State changes modeled as series of events
Profile

Created
Profile

Updated
Profile

Deactivated

Events are persisted & appended to the event log

Current state is reconstructed by replaying events Profile
State

Services can subscribe to the event log Subscriber

@suksr

Firstname

Lastname

Update

Your Profile

Client

Event Log

Event Sourcing

@suksr

Firstname

Lastname

Update

Your Profile

How to derive materialized views?

Client

Event Log

Event Sourcing

@suksr

Event-Sourcing

Firstname

Lastname

Update

Your Profile

Materialized Views

EventHandlerQuery

Read Store

@suksr

Event-Sourcing

Firstname

Lastname

Update

Your Profile

Materialized Views

EventHandlerQuery

How to update state?

Read Store

@suksr

Firstname

Lastname

Update

Your Profile

State Changes w/ Commands & Events

EventHandlerQuery

Command Event

Read Store

Event-Sourcing

@suksr

Firstname

Lastname

Update

Your Profile

State Changes w/ Commands & Events

EventHandlerQuery

Command Event

Read Store

Event-Sourcing

@suksr

Read events of
profile

replay events to
build internal
state

check invariants
on internal state

save eventgenerate event
& update internal
state

Event-Sourcing

Firstname

Lastname

Update

Your Profile

CQRS

EventHandlerQuery

Command Event

Seperate Models

Change state
(write model)

Request data
(read model)

Read Store

@suksr

Event-Sourcing

Firstname

Lastname

Update

Your Profile

CQRS

EventHandlerQuery

Command Event

Seperate Models

Change state
(write model)

Request data
(read model)

Can be scaled independently

Can be deployed separately

Read model can be optimized
to make queries fast &
efficient

Commands & Queries

Read Store

Might involve more work
due to transforming
events to a read model

Might have a higher learning
curve

@suksr

Event-Sourcing

Username

Password

Register

Registration

EventHandlerQuery

Command Event

Read Store

How to preserve business constraints among domain models, e.g. unique usernames?

Validation

@suksr

Event-Sourcing

Username

Password

Register

Registration

EventHandlerQuery

Command Event

How to preserve business constraints among domain models, e.g. unique usernames?

Username
Query

Read Store

Allocated Usernames

Validation

@suksr

Username

Password

Register

Registration

EventHandlerQuery

Command Event

How to preserve business constraints among domain models, e.g. unique usernames?

Username
Query

Read Store

Allocated Usernames

Validation: New Read Store & Client-side Query Execution

Eventual Consistency

Malicious Client?

Event-Sourcing

@suksr

Username

Password

Register

Registration

EventHandlerQuery

Command Event

How to preserve business constraints among domain models, e.g. unique usernames?

Username
Query

Read Store

Allocated Usernames

Validation: New Read Store & Client-side Query Execution

Eventual Consistency

Malicious Client?

Accounts w/
duplicated usernames

Event-Sourcing

@suksr

Username

Password

Register

Registration

EventHandlerQuery

Command Event

How to preserve business constraints among domain models, e.g. unique usernames?

Username
Query

Read Store

Allocated Usernames

Validation: New Read Store & Client-side Query Execution + Saga Pattern

Eventual Consistency

Malicious Client?

Accounts w/
duplicated usernames Compensating Eventcorrected by

Saga Pattern

Event-Sourcing

@suksr

Events for notification Event Driven State Transfer

● Simple integration
● No local datasets to maintain
● Remote query => increasing coupling

● Eliminating remote query by
introducing local copy => better
decoupling

● Local copy => better autonomy
● Duplicating effort to maintain

local dataset

Event Sourcing w/ CQRS

● Series of events make activities in business
domain explicit

● Complete log of state changes => eases
troubleshooting

● Independant scaling of read & writes
● Read store can be optimized to queries
● Enables audit logging
● Might involve more work due to

transforming events to a read model
● Preserving business contraints among

domain objects could be tricky @suksr

Event-Patterns

Message Broker Message Broker
Event Log

Query

Command

Query

Command

Challenges Of Microservices

Organizational

Manageable Steps

Cross-Cutting Concerns

Distributed Monolith

Service-Interaction, Shared Data & Event-Patterns

Circumstances

Infrastructure &
Operational Complexities

@suksr

µService

@suksr

Complexities

Hardware Data Store

 API API-Gateway Service Discovery Load-Balancer
Message Broker

Timeout-Handling Retries Idempotency Bulkheads Circuit Breaker

Config-Mngmt.
Monitoring Log Aggreation Metrics Distributed

Tracing
Health Checks

SCM

O/SVirtualization Container Runtime

Checkout TestBuild
 CI/CD Pipeline

Deploy

µService

Backup Recovery

@suksr

Complexities

Hardware Data Store

API

API-Gateway Service Discovery Load-Balancer
Message Broker

Timeout-Handling Retries Idempotency Bulkheads Circuit Breaker

Config-Mngmt.
Monitoring Log Aggreation Metrics Distributed

Tracing
Health
Checks

SCM

O/SVirtualization Container Runtime

Checkout TestBuild
 CI/CD Pipeline

Deploy Backup Recovery

@suksr

Complexities

Hardware Data Store

 API API-Gateway Service Discovery Load-Balancer
Message Broker

Timeout-Handling Retries Idempotency Bulkheads Circuit Breaker

Configuration
Monitoring Log Aggreation Metrics Distributed

Tracing
Health Checks

SCM

O/SVirtualization Container Runtime

Checkout TestBuild
 CI/CD Pipeline

Deploy

µService

Team

Structure Skillset

Size

Strategy

New Features Timeline / Milestones

Legacy

Maintenance
effort

Runtime
environment

Backup Recovery

@suksr

Complexities

@suksr

Complexities

How can a small team handle infrastructure complexities
and deliver business value?

@suksr

Complexities

Build the things that differentiate you

Offload the things that don’t

@suksr

Hardware

O/S

Virtualization

Container

Runtime

Managed Services

O/S

Orchestration

Data Store

µService

Offload by getting common
building blocks managed

@suksr

Cloud Native

Managed by YOU
Managed by PlatformHardware

O/S

Virtualization

Container

Runtime

O/S

Orchestration

µService

Container

Runtime

µService Service Discovery

 Load Balancer

Config-Mngmt.

Monitoring

Log Aggreation

Health Checks

Recovery Scaling

w/ Container Orchestration

Message Broker

Data Store

Backup

API-Gateway

@suksr

Separation Of Concerns

 Service Discovery Load-Balancer Circuit Breaker

Timeout Retries Bulkheads

Kubernetes / Service Mesh

Proxy Proxy

Business Logic
Service Mesh

Application Networking Concerns

@suksr

Hardware

O/S

Virtualization

Container

Runtime

O/S

Orchestration

Data Store

µService

Hardware

O/S

Virtualization

Container

Runtime

O/S

Orchestration

Data Store

Function

Managed by YOU
Managed by Third Party

Unit of Work

@suksr

Serverless

Serverless

FunctionEvent

Event-Driven Workflow

Hardware Data StoreO/SVirtualization Container Runtime

Fully Managed By Third Party

Ephemeral Function

Pay-per-ExecutionAuto-Scaling

Characteristics

@suksr

triggers

Serverless
Example Backend API

 listProfile

One function per endpoint and action

 API

getProfile createProfile updateProfile deleteProfile

API-Gateway

GET /profiles

GET /profiles/{id}

POST /profiles

PUT /profiles/{id}

DELETE /profiles/{id}

ProfilesService

@suksr

Serverless
Benefits

Low Maintenance

Low Cost (Total Cost of Ownership)

Easy to Scale

Focus on Code => Focus on Core Domain

@suksr

Serverless
Constraints

● Limitation in programming languages and runtimes
● Latency at initial requests (cold start)
● Limits of RAM, deployment package size, number of parallel executions
● (Maximum Execution Time)
● Tooling for distributed tracing
● Vendor Lock-In

@suksr

Start small

Lessons Learned

Handle cross-cutting concerns early Avoid a distributed monolith

Be aware of affecting circumstances
&

Distributed Systems are Complex :)

Design event-driven to be easy
to evolve

@suksr

Consider managed services to offload
infrastructure complexities

Susanne Kaiser
Independent Tech Consultant

@suksr

