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Loose coupling between services
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Incremental Decomposition = Bottom-Up  -or-  Incremental Decomposition = Top-Down
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Cross-Cutting Concerns

@% Authorization
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Cross-Cutting Concerns

O% Authorization

Ok, then I am putting my code

| have a new service

that needs authorization. Where is

the authz service | could use?

to the place where authz handling

exists ... to the monolith.

Feeding the monolith
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Ok, then | am implementing authz

in my local service.

Re-implementing authz w/ every

new service
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6 Feeding the monolith

_/_\ Re-implementing authz w/ every
new service
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Does a change to one microservice require changes to

or deployments of other microservices?
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Dual Writes

External source of truth

% Risk of Inconsistencies

“Traditional” Event-Driven System

How To Manage Shared Data? .
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Events as primary data source

Event Log
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Event Log
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Event Sourcing
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State Changes w/ Commands & Events
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Event-Sourcing

State Changes w/ Commands & Events
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. Event-Sourcing
1 CQRS

Commands & Queries

Can be scaled independently
——

Can be deployed separately
—

Read model can be optimized

to make queries fast &

efficient

o
Might involve more work
due to transforming

events to a read model
ﬁ—
Might have a higher learning

curve
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Event-Patterns

Event Driven State Transfer |

feeeas

« Simple integration « Eliminating remote query by
» No local datasets to maintain introducing local copy => better
» Remote query => increasing coupling decoupling

e Local copy => better autonomy
» Duplicating effort to maintain
local dataset

Event Sourcing w/ CQRS

Event Log

Series of events make activities in business
domain explicit

Complete log of state changes => eases
troubleshooting

Independant scaling of read & writes

Read store can be optimized to queries
Enables audit logging

Might involve more work due to
transforming events to a read model
Preserving business contraints among

domain objects could be tricky @suksr
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CompIeX|t|es
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Complexities

# PRl N

How can a small team handle infrastructure complexities

and deliver business value?

@suksr



Build the things that differentiate you

ACCELERATE

=7 O’ - > _
/\> : Flicika Parsgiuss, PRE
Jex Humbla, Ceene Kim

Offload the things that don't
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Cloud Native

w/ Contalner Orchestra_’gpn API-Gateway

Recovery D/NQ Q Scaling

pService pService
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: Container Container
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O —— Managed by YOU
Hardware F—— Managed by Platform
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.. Serverless
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Serverless

Characteristics

Event-Driven Workflow Ephemeral Function

triggers

Event Function

@ Au”Eb—ScaIing g Pay-per-Execution

Fully Managed By Third Party |’

\

Hardware Virtualization Container Runtime Data Store
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ProfilesService

L
l API-Gateway
GET /profiles/{id} PUT /profiles/{id}
GET /profiles / POST /profiles \ DELETE /profiles/{id}
v \/ \ N/ N
listProfile getProfile createProfile updateProfile deleteProfile

7

i L=

\ F’ <

One function per endpoint and action
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Serverless

Benefits

’@ Low Maintenance
&ﬁ

S Low Cost (Total Cost of Ownership)

@ Fasy to Scale

7
Cci Focus on Code => Focus on Core Domain

@suksr



Serverless

. Constraints

Limitation in programming languages and runtimes

Latency at initial requests (cold start)

Limits of RAM, deployment package size, number of parallel executions

(Maximum Execution Time)

Tooling for distributed tracing

Vendor Lock-In
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@ Lessons Learned

Start small Handle cross-cutting concerns early Avoid a distributed monolith

;o /\/\O ©
3 <

Design event-driven to be easy Consider managed services to offload Be aware of affecting circumstances

to evolve infrastructure complexities &

Distributed Systems are Complex :)
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